We studied interactions in vivo between the cytosolic muscle isoform of creatine kinase (M-CK) and the muscle isoform of 2-phospho-D-glycerate hydrolyase (beta-enolase) in muscle sarcoplasm by incubating glycerol-skinned fibres with FITC-labelled beta-enolase in the presence or absence of free CK. A small amount of bound beta-enolase was observed in the presence of large concentrations of CK. The mobility of enolase was measured in cultured satellite cells by modulated-fringe-pattern photobleaching.
View Article and Find Full Text PDFModulated fringe pattern photobleaching (MFPP) was used to measure the translational diffusion of microinjected fluorescein isothiocyanate (FITC)-labeled proteins of different sizes in the cytoplasm of cultured muscle cells. This technique, which is an extension of the classical fluorescence recovery after photobleaching (FRAP) technique, allows the measurement of the translational diffusion of macromolecules over several microns. Proteins used had molecular masses between 21 and 540 kDa.
View Article and Find Full Text PDFGlycerol-skinned skeletal muscle fibres retain the defined sarcomeric structure of the myofibrils. We show here that a small fraction of two enzymes important for energy metabolism, the cytosolic muscle isoform of creatine kinase (EC 2.7.
View Article and Find Full Text PDFThe diffusion of beta-enolase and creatine phosphokinase in muscle cells has been studied by modulated fringe pattern photobleaching. Beta-enolase is mobile in the sarcoplasm. At 20 degrees C, the diffusion coefficient is 13.
View Article and Find Full Text PDFMyotubes were obtained from culture of satellite cells. They had a sarcomeric organization similar to that of muscle. The diffusion in the direction perpendicular to the fibers of microinjected fluorescein isothiocyanate-dextrans of molecular weight ranging from 9500 to 150,000 was examined by modulated fringe pattern photobleaching.
View Article and Find Full Text PDF