Publications by authors named "M Antonowicz"

The aim of this study was to compare the degree of visibility of the lateral and medial menisci before and after tibial plateau leveling osteotomy (TPLO) on 3D-printed models created after laser scanning of the right tibia with menisci derived from a fresh cadaver of a 4-year-old adult male golden retriever. The models were produced of white polylactic acid, and the menisci were filled with light-curing red resin. The models showed a similar conformation as the natural specimen harvested from the cadaver, maintaining the same length and width, in addition to reproducing the anatomical structures.

View Article and Find Full Text PDF

The aim of this study was to conduct artificial ageing tests on polymer-ceramic composites prepared from polyamide PA-12 polymer matrix for medical applications and three different variants of ceramic fillers: zirconia, alumina and cenospheres. Before ageing, the samples were subjected to ethyl oxide sterilization. The composite variants were prepared for 3D printing using the fused deposition modeling method.

View Article and Find Full Text PDF

The main aim of this research was the preparation of a polymer-ceramic composite with PA-12 as the polymer matrix and modified aluminosilicate cenospheres (CSs) as the ceramic filler. The CSs were subjected to an early purification and cleaning process, which was also taken as a second objective. The CSs were surface modified by a two-step process: (1) etching in Piranha solution and (2) silanization in 3-aminopropyltriethoxysilane.

View Article and Find Full Text PDF

The constantly growing need for the use of implants in osteotomy is mainly due to the aging population and the need for long-term use of this type of biomaterials. Improving implant materials requires the selection of appropriate functional properties. Currently used titanium (Ti) alloys, such as Ti6Al4V and Ti6Al7Nb, are being replaced by materials with better biocompatibility, such as vanadium (V) or niobium (Nb), allowing for creation of the so-called new generation alloys.

View Article and Find Full Text PDF

This paper describes the effect of calcination temperature on the phase composition, chemical composition, and morphology of ZrO and AlO powders modified with 3-aminopropyltriethoxysilane (APTES). Both ceramic powders were modified by etching in piranha solution, neutralization in ammonia water, reaction with APTES, ultrasonication, and finally calcination at 250, 350, or 450 °C. The obtained modified powders were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, particle size distribution (PSD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDS), and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF