Life on Earth uses DNA as the central template for self-replication, genetic encoding, and information transfer. However, there are no physical laws precluding life's existence elsewhere in space, and alternative life forms may not need DNA. In the search for exobiology, knowing what to look for as a biosignature remains a challenge - especially if it is not from the obvious list of biologic building blocks.
View Article and Find Full Text PDFIn the 19th century, postmortem brain examination played a central role in the search for the neurobiological origin of psychiatric and neurological disorders. During that time, psychiatrists, neurologists, and neuropathologists examined autopsied brains from catatonic patients and postulated that catatonia is an organic brain disease. In line with this development, human postmortem studies of the 19th century became increasingly important in the conception of catatonia and might be seen as precursors of modern neuroscience.
View Article and Find Full Text PDFSince January 1st 2022, catatonia is (again) recognized as an independent diagnostic entity in the 11th revision of the International Classification of Diseases (ICD-11). This is a relevant time to systematically review how the concept of catatonia has evolved within the 19th century and how this concept changed under the influence of a wide variety of events in the history of psychiatry. Here, we systematically reviewed historical and modern German and English texts focusing on catatonic phenomena, published from 1800 to 1900.
View Article and Find Full Text PDFCurrent classification systems use the terms "catatonia" and "psychomotor phenomena" as mere a-theoretical descriptors, forgetting about their theoretical embedment. This was the source of misunderstandings among clinicians and researchers of the European collaboration on movement and sensorimotor/psychomotor functioning in schizophrenia and other psychoses or ECSP. Here, we review the different perspectives, their historical roots and highlight discrepancies.
View Article and Find Full Text PDFUnexplainable concrete softening below the water line has been observed by Sydney Water in their gravity sewer network, some of which is subjected to corrosion control methods using chemical ferrous chloride (FeCl) dosing of the wastewater. We applied a combination of physical and chemical tools to determine the properties of the top 20 mm of concrete cores recovered from sewer pipes. These techniques consist of neutron tomographic imaging, scanning electron microscopy, hardness mapping, and pH profiling.
View Article and Find Full Text PDF