Background & Aims: Colorectal cancer (CRC) is one of the most prevalent tumors worldwide, with incidence quickly increasing (particularly in the context of early-onset cases), despite important prevention efforts, mainly in the form of population-wide screening programs. Although many cases present a clear familial component, the current list of hereditary CRC genes leaves a considerable proportion of the cases unexplained.
Methods: In this work, we used whole-exome sequencing approaches on 19 unrelated patients with unexplained colonic polyposis to identify candidate CRC predisposition genes.
Intellectual disability (ID), a neurodevelopmental disorder affecting 1-3% of the general population, is characterized by limitations in both intellectual function and adaptive skills. The high number of conditions associated with ID underlines its heterogeneous origin and reveals the difficulty of obtaining a rapid and accurate genetic diagnosis. However, the Next Generation Sequencing, and the whole exome sequencing (WES) in particular, has boosted the diagnosis rate associated with ID.
View Article and Find Full Text PDFColorectal cancer (CRC) is a complex disease that can be caused by a spectrum of genetic variants ranging from low to high penetrance changes, that interact with the environment to determine which individuals will develop the disease. In this study, we sequenced 20 early-onset CRC patients to discover novel genetic variants that could be linked to the prompt disease development. Eight genes, CHAD, CHD1L, ERCC6, IGTB7, PTPN13, SPATA20, TDG and TGS1, were selected and re-sequenced in a further 304 early onset CRC patients to search for rare, high-impact variants.
View Article and Find Full Text PDFLynch syndrome (LS) is the most common hereditary colorectal cancer (CRC) syndrome, caused by heterozygous mutations in the mismatch repair (MMR) genes. Biallelic mutations in these genes lead however, to constitutive mismatch repair deficiency (CMMRD). In this study, we follow the diagnostic journey of a 12-year old patient with CRC, with a clinical phenotype overlapping CMMRD.
View Article and Find Full Text PDFGermline mutations in POLE and POLD1 have been shown to cause predisposition to colorectal multiple polyposis and a wide range of neoplasms, early-onset colorectal cancer being the most prevalent. In order to find additional mutations affecting the proofreading activity of these polymerases, we sequenced its exonuclease domain in 155 patients with multiple polyps or an early-onset colorectal cancer phenotype without alterations in the known hereditary colorectal cancer genes. Interestingly, none of the previously reported mutations in POLE and POLD1 were found.
View Article and Find Full Text PDF