This theoretical study presents the design and analytical/numerical optimization of novel dual-channel transverse fields radiofrequency (RF) surface coils for 1.5 T Magnetic Resonance Imaging (MRI). The research explores a planar setup with two channels on a row with aligned spatial orientation of the RF coils, aiming to solve a common design drawback of single-channel transverse field RF coils: the reduced Field Of View (FOV) along the direction of the RF field.
View Article and Find Full Text PDFThe chemistry of contrast agents (CAs) for magnetic resonance imaging (MRI) applications is an active area of research and, in recent work, it was shown that CA-based graphene oxide (GO) has valuable properties for biomedical uses. GO has a potential as MRI CAs thanks to several functionalities, like its ability to penetrate tissues and cell membranes, as well as easy coupling with therapeutic agents, therefore showing the potential for both a diagnostic and therapeutic role. In this study, we performed a thorough cleaning of the GO sample (synthesized using a modified Hummers method), minimizing the amount of residual manganese down to 73 ppm.
View Article and Find Full Text PDFIntroduction: Fast and accurate diagnosis of acute stroke is crucial to timely initiate reperfusion therapies. Conventional high-field (HF) MRI yields the highest accuracy in discriminating early ischaemia from haemorrhages and mimics. Rapid access to HF-MRI is often limited by contraindications or unavailability.
View Article and Find Full Text PDFRadiofrequency (RF) coils are key components in Magnetic Resonance (MR) systems and can be categorized into volume and surface coils according to their shapes. Volume RF coils can generate a uniform field in a large central sample's region, while surface RF coils, usually smaller than volume coils, typically have a higher Signal-to-Noise Ratio (SNR) in a reduced Region Of Interest (ROI) close to the coil plane but a relatively poorer field homogeneity. Circular and square loops are the simplest and most used design for developing axial field surface RF coils.
View Article and Find Full Text PDFWe present the results of the calculations of the spin-lattice relaxation time of water in contact with graphene oxide by means of all-atom molecular dynamics simulations. We fully characterized the water-graphene oxide interaction through the calculation of the relaxation properties of bulk water and of the contact angle as a function of graphene oxide oxidation state and comparing them with the available experimental data. We then extended the calculation to investigate how graphene oxide alters the dynamical and relaxation properties of water in different conditions and concentrations.
View Article and Find Full Text PDF