Phosphorus (P) budgets can be useful tools for understanding nutrient cycling and quantifying the effectiveness of nutrient management planning and policies; however, uncertainties in agricultural nutrient budgets are not often quantitatively assessed. The objective of this study was to evaluate uncertainty in P fluxes (fertilizer/manure application, atmospheric deposition, irrigation, crop removal, surface runoff, and leachate) and the propagation of these uncertainties to annual P budgets. Data from 56 cropping systems in the P-FLUX database, which spans diverse rotations and landscapes across the United States and Canada, were evaluated.
View Article and Find Full Text PDFQuantifying spatial and temporal fluxes of phosphorus (P) within and among agricultural production systems is critical for sustaining agricultural production while minimizing environmental impacts. To better understand P fluxes in agricultural landscapes, P-FLUX, a detailed and harmonized dataset of P inputs, outputs, and budgets, as well as estimated uncertainties for each P flux and budget, was developed. Data were collected from 24 research sites and 61 production systems through the Long-term Agroecosystem Research (LTAR) network and partner organizations spanning 22 U.
View Article and Find Full Text PDF