Publications by authors named "M Akeson"

Transfer RNAs (tRNAs) contain dozens of chemical modifications. These modifications are critical for maintaining tRNA tertiary structure and optimizing protein synthesis. Here we advance the use of Nanopore direct RNA-sequencing (DRS) to investigate the synergy between modifications that are known to stabilize tRNA structure.

View Article and Find Full Text PDF

Nanopore direct RNA sequencing (DRS) reads continuous native RNA strands. Early adopters have used this technology to document nucleotide modifications and 3′ polyadenosine tails on RNA strands without added chemistry steps. Individual strands ranging in length from 70 to 26,000 nucleotides have been sequenced.

View Article and Find Full Text PDF

The SARS-CoV-2 virus has a complex transcriptome characterised by multiple, nested subgenomic RNAsused to express structural and accessory proteins. Long-read sequencing technologies such as nanopore direct RNA sequencing can recover full-length transcripts, greatly simplifying the assembly of structurally complex RNAs. However, these techniques do not detect the 5' cap, thus preventing reliable identification and quantification of full-length, coding transcript models.

View Article and Find Full Text PDF

Nanopore sequencing devices read individual RNA strands directly. This facilitates identification of exon linkages and nucleotide modifications; however, using conventional direct RNA nanopore sequencing, the 5' and 3' ends of poly(A) RNA cannot be identified unambiguously. This is due in part to RNA degradation in vivo and in vitro that can obscure transcription start and end sites.

View Article and Find Full Text PDF