Publications by authors named "M Aidelsburger"

Flux attachment provides a powerful conceptual framework for understanding certain forms of topological order, including most notably the fractional quantum Hall effect. Despite its ubiquitous use as a theoretical tool, directly realizing flux attachment in a microscopic setting remains an open challenge. Here, we propose a simple approach to realizing flux attachment in a periodically driven (Floquet) system of either spins or hard-core bosons.

View Article and Find Full Text PDF

Quantum gas microscopes have revolutionized quantum simulations with ultracold atoms, allowing one to measure local observables and snapshots of quantum states. However, measurements so far were mostly carried out in the occupation basis. Here, we demonstrate how all kinetic operators, such as kinetic energy or current operators, can be measured and manipulated with single-bond resolution.

View Article and Find Full Text PDF

Optical box traps offer new possibilities for quantum-gas experiments. Building on their exquisite spatial and temporal control, we propose to engineer system-reservoir configurations using box traps, in view of preparing and manipulating topological atomic states in optical lattices. First, we consider the injection of particles from the reservoir to the system: this scenario is shown to be particularly well suited to activating energy-selective chiral edge currents, but also to prepare fractional Chern insulating ground states.

View Article and Find Full Text PDF

The study of geometrically frustrated many-body quantum systems is of central importance to uncover novel quantum mechanical effects. We design a scheme where ultracold bosons trapped in a one-dimensional state-dependent optical lattice are modeled by a frustrated Bose-Hubbard Hamiltonian. A derivation of the Hamiltonian parameters based on Cesium atoms, further show large tunability of contact and nearest-neighbor interactions.

View Article and Find Full Text PDF