Publications by authors named "M Agbaria"

Spiro N-heterocycles, particularly aza-spiro piperidines, have shown significant promise in pharmaceutical applications due to their ability to enhance physicochemical properties. Despite their potential, the preparation of these complex structures poses significant challenges. To address this, we propose a one-pot dearomative spirocyclization reaction of ynamides.

View Article and Find Full Text PDF

We present a comprehensive study on the conformational behavior of diversely substituted 4-fluorotetrahydrothiopyran derivatives. Through quantum chemical simulations including DFT as well as NBO and NPA analysis, we elucidate the pivotal role of electrostatic interactions, occasionally complemented by hyperconjugative interactions, in stabilizing axial fluorine conformers. Less polar conformers were occasionally obtained, attributed to the interplay of electrostatic and hyperconjugative interactions.

View Article and Find Full Text PDF

Despite tremendous global efforts since the beginning of the COVID-19 pandemic, still only a limited number of prophylactic and therapeutic options are available. Although vaccination is the most effective measure in preventing morbidity and mortality, there is a need for safe and effective post-infection treatment medication. In this study, we explored a pipeline of 21 potential candidates, examined in the Calu-3 cell line for their antiviral efficacy, for drug repurposing.

View Article and Find Full Text PDF

The [1,2]-Brook rearrangement stands as a potent technique for constructing complex molecules. In this study, we showcase its power in the dearomatization of aromatic N-heterocycles. Through a concise four-step process that integrates lithiation, nucleophilic addition, Brook rearrangement and dearomatization reaction, we demonstrate a versatile strategy for generating diverse non-aromatic N-heterocycles which exhibit ambident reactivities.

View Article and Find Full Text PDF

This article explores the potential of non-invasive measurement for elevated levels of erythrocyte aggregation , which have been correlated with a higher risk of inflammatory processes. The study proposes utilizing a dynamic light scattering approach to measure aggregability. The sensor modules, referred to as "mDLS," comprise VCSEL and two photodiodes.

View Article and Find Full Text PDF