Recurrent fusions drive the pathogenesis of many hematological malignancies. Compared to routine cytogenetic/fluorescence in situ hybridization (FISH) studies, the RNA-based next-generation sequencing (NGS) fusion assay enables the identification of both known and novel fusions. In many cases, these recurrent fusions are crucial for diagnosis and are associated with prognosis, relapse prediction, and therapeutic options.
View Article and Find Full Text PDFDespite the success of the CD19xCD3 T cell engager blinatumomab in B-cell acute lymphoblastic leukemia (B-ALL), treatment failure is common and can manifest with antigen loss and extramedullary disease (EMD) relapse. To understand the impact of leukemia genetics on outcomes, we reviewed 267 adult patients with B-ALL treated with blinatumomab and used next generation sequencing to identify molecular alterations. Patients received blinatumomab for relapsed/refractory (R/R) disease (n=150), minimal residual disease (MRD+) (n=88), upfront as induction (n=10), or as consolidation in MRD- state (n=19).
View Article and Find Full Text PDFMicroorganisms underpin numerous ecosystem processes and support biodiversity globally. Yet, we understand surprisingly little about what structures environmental microbiomes, including how to efficiently identify key players. Microbiome network theory predicts that highly connected hubs act as keystones, but this has never been empirically tested in nature.
View Article and Find Full Text PDFPatients with AML and measurable residual disease (MRD) undergoing allogeneic hematopoietic cell transplantation (HCT) may benefit from myeloablative conditioning (MAC) when feasible to reduce relapse risk. Fludarabine-Melphalan (FluMel) is a common reduced intensity conditioning (RIC) regimen; however, data in MRD+ patients is sparse. We performed a retrospective review of AML patients who underwent their first HCT (2016-2021) without morphologic disease at City of Hope who had pre-transplant marrow evaluated for MRD using multicolor flow cytometry (MFC) and received radiation-based MAC or FluMel conditioning.
View Article and Find Full Text PDFPurpose: Leptomeningeal disease (LMD) is associated with significant morbidity and mortality for metastatic non-small cell lung cancer (NSCLC). We describe our clinical experience in evaluating the use of cerebrospinal fluid (CSF)-derived circulating tumor cells (CTCs) for the diagnosis of LMD and the detection of genomic alterations in CSF cell-free DNA (cfDNA).
Methods: Patients with NSCLC who had CSF collection as part of routine clinical care for suspected LMD were included in the study.