Publications by authors named "M Ackerman"

Background: Brugada syndrome (BrS) is a genetic heart disease that predisposes individuals to ventricular arrhythmias and sudden cardiac death. Although implantable cardioverter-defibrillators (ICDs) and quinidine are primary treatments, recurrent BrS-triggered ventricular arrhythmias can persist. In this setting, epicardial substrate ablation has emerged as a promising alternative for symptomatic patients.

View Article and Find Full Text PDF

Objective: To test whether an artificial intelligence (AI) deep neural network (DNN)-derived analysis of the 12-lead electrocardiogram (ECG) can distinguish patients with long QT syndrome (LQTS) from those with acquired QT prolongation.

Methods: The study cohort included all patients with genetically confirmed LQTS evaluated in the Windland Smith Rice Genetic Heart Rhythm Clinic and controls from Mayo Clinic's ECG data vault comprising more than 2.5 million patients.

View Article and Find Full Text PDF

Development of an effective tuberculosis (TB) vaccine has been challenged by incomplete understanding of specific factors that provide protection against (Mtb) and the lack of a known correlate of protection (CoP). Using a combination of samples from a vaccine showing efficacy (DarDar [NCT00052195]) and Bacille Calmette-Guerin (BCG)-immunized humans and nonhuman primates (NHP), we identify a humoral CoP that translates across species and vaccine regimens. Antibodies specific to the DarDar vaccine strain () sonicate (MOS) correlate with protection from the efficacy endpoint of definite TB.

View Article and Find Full Text PDF

Background: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare, potentially life-threatening genetic heart disease. Nonselective beta-blockers (BBs) are highly effective in reducing CPVT-triggered arrhythmic events. However, some patients suffer from unacceptable BB side effects and might require strategies without a BB.

View Article and Find Full Text PDF

Background: Congenital long QT syndrome (LQTS) is characterized by delayed ventricular repolarization, predisposing to potentially lethal ventricular arrhythmias. The variability in disease severity among patients remains largely unexplored, underscoring the limitations of current risk stratification methods.

Objective: We aimed to evaluate the potential utility of electrocardiographic markers from the exercise stress test (EST) in identifying patients with high-risk LQTS.

View Article and Find Full Text PDF