Publications by authors named "M Acet"

The shell-ferromagnetic effect originates from the segregation process in off-stoichiometric Ni-Mn-based Heusler alloys. In this work, we investigate the precipitation process of L2-ordered NiMnSn and L1-ordered NiMn in off-stoichiometric NiMnSn during temper annealing, by X-ray diffraction (XRD) and Sn Mössbauer spectroscopy. While XRD probes long-range ordering of the lattice structure, Mössbauer spectroscopy probes nearest-neighbour interactions, reflected in the induced Sn magnetic moment.

View Article and Find Full Text PDF

In this study, we investigate the enhancement of exchange bias in core/shell/shell structures by synthesizing single inverted core/shell (Co-oxide/Co) and core/shell/shell (Co-oxide/Co/Co-oxide) nanostructures through a two-step reduction and oxidation method. We evaluate the magnetic properties of the structures and study the effect of shell thickness on the exchange bias by synthesizing various shell thicknesses of Co-oxide/Co/Co-oxide nanostructures. The extra exchange coupling formed at the shell-shell interface in the core/shell/shell structure leads to a remarkable increase in the coercivity and the strength of the exchange bias by three and four orders, respectively.

View Article and Find Full Text PDF

This study was planned to test whether follicular fluid (FF) levels of patatin-like phospholipase domain containing 3-gene (PNPLA3:adiponutrin), preptin, kisspeptin, and amylin change in polycystic ovarian syndrome (PCOS). A total of 40 infertile volunteers undergoing IVF/ICSI were included in the study. They were divided into two groups as PCOS (n=20) and control group without PCOS (n=20).

View Article and Find Full Text PDF

Embryos have evolved a remarkable capacity to find implantation site. The impressive navigation ability of natural blastocysts may rely on highly sensitive signals arising from embryos and specialized signal processing strategies in the endometrium. Navigation capabilities may be compromised in ICSI embryos because of altered biochemical signaling.

View Article and Find Full Text PDF

The off-stoichiometric antiferromagnetic Heusler alloy FeMnGa decomposes and forms ferromagnetic FeMnGa precipitates embedded in an antiferromagnetic FeMn matrix when temper-annealed at temperatures T  >  550 K. The ferromagnetism of the precipitates is soft so that the magnetization direction of the non-interacting precipitates in a macroscopic material can be manipulated by locally applied fields so that even two similar poles can form at the ends of a centimeter-long bar. The cause for the soft magnetic behavior is due to the weak AF exchange anisotropy of the cubic FeMn matrix and the precipitate.

View Article and Find Full Text PDF