Publications by authors named "M Abovsky"

Introduction: Kidney transplantation is the optimal treatment for end-stage kidney disease; however, premature allograft loss remains a serious issue. While many high-throughput omics studies have analyzed patient allograft biospecimens, integration of these datasets is challenging, which represents a considerable barrier to advancing our understanding of the mechanisms of allograft loss.

Methods: To facilitate integration, we have created a curated database containing all open-access high-throughput datasets from human kidney transplant studies, termed NephroDIP (Nephrology Data Integration Portal).

View Article and Find Full Text PDF

In recent decades, the development of new drugs has become increasingly expensive and inefficient, and the molecular mechanisms of most pharmaceuticals remain poorly understood. In response, computational systems and network medicine tools have emerged to identify potential drug repurposing candidates. However, these tools often require complex installation and lack intuitive visual network mining capabilities.

View Article and Find Full Text PDF

Pathway Data Integration Portal (PathDIP) is an integrated pathway database that was developed to increase functional gene annotation coverage and reduce bias in pathway enrichment analysis. PathDIP 5 provides multiple improvements to enable more interpretable analysis: users can perform enrichment analysis using all sources, separate sources or by combining specific pathway subsets; they can select the types of sources to use or the types of pathways for the analysis, reducing the number of resulting generic pathways or pathways not related to users' research question; users can use API. All pathways have been mapped to seven representative types.

View Article and Find Full Text PDF
Article Synopsis
  • The drug development process has become costly and inefficient due to poorly understood molecular mechanisms and the complexity of existing computational tools.
  • Drugst.One is a new platform designed to simplify drug repurposing by converting systems biology software into user-friendly web applications with minimal coding.
  • With successful integration into 21 computational systems medicine tools, Drugst.One aims to enhance the drug discovery process and help researchers concentrate on important aspects of developing pharmaceutical treatments.
View Article and Find Full Text PDF

Objective: OsteoDIP aims to collect and provide, in a simple searchable format, curated high throughput RNA expression data related to osteoarthritis.

Design: Datasets are collected annually by searching "osteoarthritis gene expression profile" in PubMed. Only publications containing patient data and a list of differentially expressed genes are considered.

View Article and Find Full Text PDF