Landau-Zener tunneling, which describes the transition in a two-level system during a sweep through an anti-crossing, is a model applicable to a wide range of physical phenomena. Realistic quantum systems are affected by dissipation due to coupling to their environments. An important aspect of understanding such open quantum systems is the relative energy scales of the system itself and the system-environment coupling, which distinguishes the weak- and strong-coupling regimes.
View Article and Find Full Text PDFWe have implemented a Walsh-Hadamard gate, which performs a quantum Fourier transform, in a superconducting qutrit. The qutrit is encoded in the lowest three energy levels of a capacitively shunted flux device, operated at the optimal flux-symmetry point. We use an efficient decomposition of the Walsh-Hadamard gate into two unitaries, generated by off-diagonal and diagonal Hamiltonians, respectively.
View Article and Find Full Text PDFThe original PDF and HTML versions of this Article omitted the ORCID ID of the authors L. Magazzù and P. Forn-Díaz.
View Article and Find Full Text PDFQuantum two-level systems interacting with the surroundings are ubiquitous in nature. The interaction suppresses quantum coherence and forces the system towards a steady state. Such dissipative processes are captured by the paradigmatic spin-boson model, describing a two-state particle, the "spin", interacting with an environment formed by harmonic oscillators.
View Article and Find Full Text PDFWe present a fabrication process for graphene-based devices where a graphene monolayer is suspended above a local metallic gate placed in a trench. As an example we detail the fabrication steps of a graphene field-effect transistor. The devices are built on a bare high-resistivity silicon substrate.
View Article and Find Full Text PDF