We derive the compact closed forms of local quantum uncertainty (LQU) and local quantum Fisher information (LQFI) for hybrid qubit-qutrit axially symmetric (AS) states. This allows us to study the quantum correlations in detail and present some essentially novel results for spin-(1/2, 1) systems, the Hamiltonian of which contains ten independent types of physically important parameters. As an application of the derived formulas, we study the behavior of these two quantum correlation measures at thermal equilibrium.
View Article and Find Full Text PDFQuantum Otto and Carnot engines have recently been receiving attention due to their ability to achieve high efficiencies and powers based on the laws of quantum mechanics. This paper discusses the theory, progress, and possible applications of quantum Otto and Carnot engines, such as energy production, cooling, and nanoscale technologies. In particular, we investigate a two-spin Heisenberg system that works as a substance in quantum Otto and Carnot cycles while exposed to an external magnetic field with both Dzyaloshinsky-Moriya and dipole-dipole interactions.
View Article and Find Full Text PDF