Scope: The α-tocopherol long-chain metabolite α-tocopherol-13'-hydroxy-chromanol (α-T-13'-COOH) is a proposed regulatory intermediate of endogenous vitamin E metabolism. Effects of α-T-13'-COOH on cell viability and adaptive stress response are not well understood. The present study aims to investigate the concentration-dependent effects of α-T-13'-COOH on cellular redox homeostasis, genotoxicity, and cytotoxicity in murine RAW264.
View Article and Find Full Text PDFThe mouse model of 2,4-dinitrochlorbenzene (DNCB)-induced human-like atopic dermatitis (hlAD) has been widely used to test novel treatment strategies and compounds. However, the study designs and methods are highly diverse, presenting different hlAD disease patterns that occur after sensitization and repeated challenge with DNCB on dorsal skin. In addition, there is a lack of information about the progression of the disease during the experiment and the achieved pheno- and endotypes, especially at the timepoint when therapeutic treatment is initiated.
View Article and Find Full Text PDFAnticancer effects of vitamin E (tocopherols) have been studied extensively. While and animal studies showed promising results regarding anticancer effects of tocopherols, human intervention studies failed to reproduce these results. , α-tocopherol (α-TOH) is metabolized to the long-chain metabolites (LCM) 13'-hydroxychromanol (α-13'-OH) and 13'-carboxychromanol (α-13'-COOH), which likely reach the large intestine.
View Article and Find Full Text PDFIn dermatological research, 2,4-dinitrochlorbenzene (DNCB)-induced atopic dermatitis (AD) is a standard model as it displays many disease-associated characteristics of human AD. However, the reproducibility of the model is challenging due to the lack of information regarding the methodology and the description of the phenotype and endotype of the mimicked disease. In this study, a DNCB-induced mouse model was established with a detailed procedure description and classification of the AD human-like skin type.
View Article and Find Full Text PDF