The regulation of reactive oxygen species (ROS) such as superoxide (SO) and nitric oxide (NO) is crucial in biology, influencing metabolism and signaling pathways. Imbalances in these species lead to oxidative stress and various diseases. Traditional methods for measuring SO and NO face challenges in terms of sensitivity and specificity, particularly in complex biological matrices.
View Article and Find Full Text PDFIn a recent American Journal of Obstetrics and Gynecology, 900 professors submitted a Special Report calling for reinstating federal protection for abortion. Here, we provide an alternative consensus statement. Induced abortion is not a constitutional right.
View Article and Find Full Text PDFScientists have long conjectured that the neocortex learns patterns in sensory data to generate top-down predictions of upcoming stimuli. In line with this conjecture, different responses to pattern-matching vs pattern-violating visual stimuli have been observed in both spiking and somatic calcium imaging data. However, it remains unknown whether these pattern-violation signals are different between the distal apical dendrites, which are heavily targeted by top-down signals, and the somata, where bottom-up information is primarily integrated.
View Article and Find Full Text PDFThe classic view that neural populations in sensory cortices preferentially encode responses to incoming stimuli has been strongly challenged by recent experimental studies. Despite the fact that a large fraction of variance of visual responses in rodents can be attributed to behavioral state and movements, trial-history, and salience, the effects of contextual modulations and expectations on sensory-evoked responses in visual and association areas remain elusive. Here, we present a comprehensive experimental and theoretical study showing that hierarchically connected visual and association areas differentially encode the temporal context and expectation of naturalistic visual stimuli, consistent with the theory of hierarchical predictive coding.
View Article and Find Full Text PDFThe apical dendrites of pyramidal neurons in sensory cortex receive primarily top-down signals from associative and motor regions, while cell bodies and nearby dendrites are heavily targeted by locally recurrent or bottom-up inputs from the sensory periphery. Based on these differences, a number of theories in computational neuroscience postulate a unique role for apical dendrites in learning. However, due to technical challenges in data collection, little data is available for comparing the responses of apical dendrites to cell bodies over multiple days.
View Article and Find Full Text PDF