Two-dimensional materials are extraordinarily sensitive to external stimuli, making them ideal for studying fundamental properties and for engineering devices with new functionalities. One such stimulus, strain, affects the magnetic properties of the layered magnetic semiconductor CrSBr to such a degree that it can induce a reversible antiferromagnetic-to-ferromagnetic phase transition. Using scanning SQUID-on-lever microscopy, we directly image the effects of spatially inhomogeneous strain on the magnetization of layered CrSBr, as it is polarized by a field applied along its easy axis.
View Article and Find Full Text PDFSince their first observation in 2017, atomically thin van der Waals (vdW) magnets have attracted significant fundamental, and application-driven attention. However, their low ordering temperatures, T, sensitivity to atmospheric conditions and difficulties in preparing clean large-area samples still present major limitations to further progress, especially amongst van der Waals magnetic semiconductors. The remarkably stable, high-T vdW magnet CrSBr has the potential to overcome these key shortcomings, but its nanoscale properties and rich magnetic phase diagram remain poorly understood.
View Article and Find Full Text PDFThe exchange bias phenomenon, inherent in exchange-coupled ferromagnetic and antiferromagnetic systems, has intrigued researchers for decades. Van der Waals materials, with their layered structures, offer an ideal platform for exploring exchange bias. However, effectively manipulating exchange bias in van der Waals heterostructures remains challenging.
View Article and Find Full Text PDFWe present a comprehensive study of the temperature- and magnetic-field-dependent photoluminescence (PL) of individual NV centers in diamond, spanning the temperature-range from cryogenic to ambient conditions. We directly observe the emergence of the NV's room-temperature effective excited-state structure and provide a clear explanation for a previously poorly understood broad quenching of NV PL at intermediate temperatures around 50 K, as well as the subsequent revival of NV PL. We develop a model based on two-phonon orbital averaging that quantitatively explains all of our findings, including the strong impact that strain has on the temperature dependence of the NV's PL.
View Article and Find Full Text PDFQuantum light emitters capable of generating single photons with circular polarization and non-classical statistics could enable non-reciprocal single-photon devices and deterministic spin-photon interfaces for quantum networks. To date, the emission of such chiral quantum light relies on the application of intense external magnetic fields, electrical/optical injection of spin-polarized carriers/excitons or coupling with complex photonic metastructures. Here we report the creation of free-space chiral quantum light emitters via the nanoindentation of monolayer WSe/NiPS heterostructures at zero external magnetic field.
View Article and Find Full Text PDF