Publications by authors named "M A Tripp-Valdez"

Understanding the molecular mechanisms underlying thermal acclimation and heat shock responses in marine ectotherms is critical for assessing their adaptive capacity in the context of climate change and climate extremes. This study examines the expression dynamics of heat shock proteins (HSPs) in the scallop Nodipecten subnodosus, shedding light on their role in thermal adaptation. Our analysis revealed the presence of several conserved functional signatures in N.

View Article and Find Full Text PDF

High temperature increases energy demand in ectotherms, limiting their physiological capability to cope with hypoxic events. The present study aimed to assess the metabolic tolerance of juvenile Nodipecten subnodosus scallops to acute hyperthermia combined with moderate hypoxia. A previous study showed that juveniles exhibited a high upper temperature limit (32 °C), but the responses of juveniles to combined hyperthermia and low dissolved oxygen are unknown.

View Article and Find Full Text PDF

Hippocampus erectus inhabiting the shallow coastal waters of the southern Gulf of Mexico are naturally exposed to marked temperature variations occurring in different temporal scales. Under such heterogeneous conditions, a series of physiological and biochemical adjustments take place to restore and maintain homeostasis. This study investigated the molecular mechanisms involved in the response of H.

View Article and Find Full Text PDF

Crassostrea virginica was exposed to different light crude oil levels to assess the effect on transcriptomic response and metabolic rate. The exposure time was 21 days, and levels of 100 and 200 μg/L were used, including a control. The most significant difference among treatments was the overexpression of several genes associated with energy production, reactive oxygen species (ROS) regulation, immune system response, and inflammatory response.

View Article and Find Full Text PDF

Along the Pacific coast of the Baja California Peninsula (Mexico), abalone represents one of the most lucrative fisheries. As wild populations are currently depleted, abalone farm production aims to balance the decreasing populations with the increasing demand. The Mexican abalone aquaculture is almost entirely based on red abalone (Haliotis rufescens).

View Article and Find Full Text PDF