Publications by authors named "M A Szatkowski"

The need set by a computational industry to increase processing power, while simultaneously reducing the energy consumption of data centers, became a challenge for modern computational systems. In this work, we propose an optical communication solution, that could serve as a building block for future computing systems, due to its versatility. The solution arises from Landauer's principle and utilizes reversible logic, manifested as an optical logical gate with structured light, here represented as Laguerre-Gaussian modes.

View Article and Find Full Text PDF

The aim of this research was to develop a solution based on existing methods and tools that would allow the automatic classification of selected images of cast iron microstructures. As part of the work, solutions based on artificial intelligence were tested and modified. Their task is to assign a specific class in the analyzed microstructure images.

View Article and Find Full Text PDF

Optical vortices are widely used in optics and photonics, impacting the measurements and conclusions derived from their use. Thus, it is crucial to evaluate optical vortices efficiently. This work aims to establish metrics for evaluating optical vortex quality to support the implementation procedure and, hence, provide a tool supporting research purposes and technological developments.

View Article and Find Full Text PDF

Optical vortices are stable phase singularities, revealing a zero-point in the intensity distribution. The localization of this singular point is of significant importance for any application that relies on vortices and their behavior. However, there is still a need for an adaptable, fast, and precise method of singular point localization.

View Article and Find Full Text PDF

We propose an improvement of the interferometric method used up to now to measure the chromatic dispersion in single mode optical fibers, which enables dispersion measurements in higher-order modes over a wide spectral range. To selectively excite a specific mode, a spatial light modulator was used in the reflective configuration to generate an appropriate phase distribution across an input supercontinuum beam. We demonstrate the feasibility of the proposed approach using chromatic dispersion measurements of the six lowest order spatial modes supported by an optical fiber in the spectral range from 450 to 1600 nm.

View Article and Find Full Text PDF