A novel method for culturing ovules of Gossypium barbadense allowed in vitro comparisons with Gossypium hirsutum and revealed variable roles of microtubules in controlling cotton fiber cell expansion. Cotton fibers undergo extensive elongation and secondary wall thickening as they develop into our most important renewable textile material. These single cells elongate at the apex as well as elongating and expanding in diameter behind the apex.
View Article and Find Full Text PDFCotton fibers arise through highly anisotropic expansion of a single seed epidermal cell. We obtained evidence that apical cell wall synthesis occurs through examining the tips of young elongating Gossypium hirsutum (Gh) and G. barbadense (Gb) fibers.
View Article and Find Full Text PDFCosmetic, functional, and structural sequelae of scarring are innumerable, and measures exist to optimize and ultimately minimize these sequelae. To evaluate the innumerable methods available to decrease the cosmetic, functional, and structural repercussions of scarring, pubMed search of the English literature with key words scar, scar revision, scar prevention, scar treatment, scar remodeling, cicatrix, cicatrix treatment, and cicatrix remodeling was done. Original articles and reviews were examined and included.
View Article and Find Full Text PDFCotton fibers are single-celled extensions of the seed epidermis. They can be isolated in pure form as they undergo staged differentiation including primary cell wall synthesis during elongation and nearly pure cellulose synthesis during secondary wall thickening. This combination of features supports clear interpretation of data about cell walls and cellulose synthesis in the context of high throughput modern experimental technologies.
View Article and Find Full Text PDFCoenzyme Q (CoQ) is a naturally occurring lipid-soluble quinone that performs multiple functions in all living cells and has become a popular antioxidant supplement, a coadjuvant in the treatment of heart disease, and the object of study for treating neurodegenerative disorders. Although there are many tools for CoQ analysis of microbial and animal samples, there have been relatively few reports of methods for CoQ analysis of green plants. This work describes a method for the routine analysis of coenzyme Q(10) in green leaf tissue of cultivated Nicotiana tabacum (tobacco) using high-performance liquid chromatography (HPLC) with UV detection.
View Article and Find Full Text PDF