Publications by authors named "M A Sochaski"

We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compared against regulatory exposure estimates, providing an activity-to-exposure ratio (AER) useful for a risk-based ranking strategy. As ToxCast efforts expand (ie, Phase II) beyond food-use pesticides toward a wider chemical domain that lacks exposure and toxicity information, prediction tools become increasingly important.

View Article and Find Full Text PDF

Momentum is growing worldwide to use in vitro high-throughput screening (HTS) to evaluate human health effects of chemicals. However, the integration of dosimetry into HTS assays and incorporation of population variability will be essential before its application in a risk assessment context. Previously, we employed in vitro hepatic metabolic clearance and plasma protein binding data with in vitro in vivo extrapolation (IVIVE) modeling to estimate oral equivalent doses, or daily oral chemical doses required to achieve steady-state blood concentrations (Css) equivalent to media concentrations having a defined effect in an in vitro HTS assay.

View Article and Find Full Text PDF

Hexamethylene diisocyanate (HDI) is a reactive chemical used in the commercial production of polyurethanes. Toxic effects in rodents exposed to HDI vapor primarily occur in the nasal passages, yet some individuals exposed occupationally to concentrations exceeding current regulatory limits may experience temporary reduction in lung function and asthma-like symptoms. Knowledge of interspecies differences in respiratory tract dosimetry of inhaled HDI would improve our understanding of human health risks to this compound.

View Article and Find Full Text PDF

The use of high-throughput in vitro assays has been proposed to play a significant role in the future of toxicity testing. In this study, rat hepatic metabolic clearance and plasma protein binding were measured for 59 ToxCast phase I chemicals. Computational in vitro-to-in vivo extrapolation was used to estimate the daily dose in a rat, called the oral equivalent dose, which would result in steady-state in vivo blood concentrations equivalent to the AC 50 or lowest effective concentration (LEC) across more than 600 ToxCast phase I in vitro assays.

View Article and Find Full Text PDF

Male F344 rats were exposed to hydrazobenzene (HZB) by dietary feed at concentrations of 0, 5, 20, 80, 200, or 300 ppm for 5 days, 2 weeks, 4 weeks, or 13 weeks duration. End points evaluated included clinical observations, body weights, liver weights, serum chemistry, blood HZB, gross pathology, and liver histopathology. There were no HZB exposure-related clinical signs of toxicity.

View Article and Find Full Text PDF