Publications by authors named "M A Sillero"

A new generation of spectrophotometers able to measure a wide range of absorbance in microliter aliquots is currently used for the determination of DNA, RNA, and proteins. The object of this article is to show that these instruments could be easily adapted for routine evaluation of enzymes and metabolites in 1-2-microl volumes of biological samples.

View Article and Find Full Text PDF

Compounds of the mevalonate pathway containing a terminal di- or triphosphate (mev-PP or mev-PPP) were tested as substrates of several enzyme ligases (T4 RNA ligase, T4 DNA ligase, firefly luciferase and other ligases) for the synthesis of ATP derivatives of the mev-pppA or mev-ppppA type. T4 RNA ligase, in the presence of ATP and the substrates: geranyl, farnesyl or isopentenyl triphosphates, and geranyl, farnesyl, dimethylallyl or isopentenyl diphosphates, all at 0.3 mM concentration, catalyzed the synthesis of the corresponding ATP derivatives at a relative rate of activity of: 7.

View Article and Find Full Text PDF

T4 RNA ligase catalyzes the synthesis of ATP beta,gamma-bisphosphonate analogues, using the following substrates with the relative velocity rates indicated between brackets: methylenebisphosphonate (pCH(2)p) (100), clodronate (pCCl(2)p) (52), and etidronate (pC(OH)(CH(3))p) (4). The presence of pyrophosphatase about doubled the rate of these syntheses. Pamidronate (pC(OH)(CH(2)-CH(2)-NH(2))p), and alendronate (pC(OH)(CH(2)-CH(2)-CH(2)-NH(2))p) were not substrates of the reaction.

View Article and Find Full Text PDF

Polyphosphates of different chain lengths (P(3), P(4), P(15), P(35)), (1 microM) inhibited 10, 60, 90 and 100%, respectively, the primer (tRNA) dependent synthesis of poly(A) catalyzed poly(A) polymerase from Saccharomyces cerevisiae. The relative inhibition evoked by p(4)A and P(4) (1 microM) was 40 and 60%, respectively, whereas 1 microM Ap(4)A was not inhibitory. P(4) and P(15) were assayed as inhibitors of the enzyme in the presence of (a) saturating tRNA and variable concentrations of ATP and (b) saturating ATP and variable concentrations of tRNA.

View Article and Find Full Text PDF