Chemotherapeutic agents containing targeted systems are a promising pathway to increase the effectiveness of glioblastoma treatment. Specific proteins characterized by increased expression on the surface of tumor cells are considered as possible targets. Integrin αvβ3 is one of such proteins on the cell surface.
View Article and Find Full Text PDFOne of the current trends in modern pharmaceuticals is the supply of drugs by transport systems. The use of delivery systems allows to increase the therapeutic efficacy, tolerability, and safety of drug therapy. Liposomes, polymer nanoparticles, carbon nanoparticles, blood cells, metal nanoparticles, oxides, etc.
View Article and Find Full Text PDFNonsteroidal anti-inflammatory drugs (NSAIDs), inhibitors of cyclooxygenase-2, an enzyme involved in the formation of anti-inflammatory prostaglandin PGE2, are the most common treatment for chronic inflammatory diseases, such as, for example, arthritis. One of the most commonly used drugs of this class is indomethacin, a derivative of indolylacetic acid. In this work, we studied the physicochemical properties of the phospholipid composition of indomethacin obtained earlier (codenamed "Indolip") and the effect of freeze drying on its parameters.
View Article and Find Full Text PDFTo improve the therapeutic properties of the antitumor agent Sarcolysin, we have previously developed and characterized a dosage form representing its ester conjugate with decanol embedded in ultra-small phospholipid nanoparticles less than 30 nm in size ("Sarcolysin-NP"). The effect of the resulting composition was investigated in vivo in comparison with the free substance of sarcolysin. The composition intravenous administration to mice showed an improvement in the pharmacokinetic parameters of sarcolysin associated with its initial higher (by 22%) level in the blood and prolonged circulation, which was also observed in mice with P388 tumor.
View Article and Find Full Text PDFThe review highlights the safety issues of drug delivery systems based on liposomes. Due to their small sizes (about 80-120 nm, sometimes even smaller), phospholipid nanoparticles interact intensively with living systems during parenteral administration. This interaction significantly affects both their transport role and safety; therefore, special attention is paid to these issues.
View Article and Find Full Text PDF