Unlabelled: Splicing of the hTERT gene to produce the full-length (FL) transcript is necessary for telomerase enzyme activity and telomere-dependent cellular immortality in the majority of human tumors, including non-small cell lung cancer (NSCLC) cells. The molecular machinery to splice hTERT to the FL isoform remains mostly unknown. Previously, we reported that an intron 8 cis-element termed "direct repeat 8" (DR8) promotes FL hTERT splicing, telomerase, and telomere length maintenance when bound by NOVA1 and PTBP1 in NSCLC cells.
View Article and Find Full Text PDFIntroduction: Aerobic exercise maintains telomere length through increased human telomerase reverse transcriptase (hTERT) expression and telomerase enzyme activity. The impact of acute exercise on hTERT alternative splicing (AS) is unknown.
Purpose: This study aimed to examine hTERT AS in response to acute treadmill running.
The FOXP3 gene was initially identified because its mutation caused lethal autoimmune diseases in mice and humans. Mice with heterozygous mutations of FoxP3 (mouse version of the FOXP3 gene) succumb to mammary tumors spontaneously, while those with prostate-specific deletions develop prostate intraepithelial neoplasia. Somatic mutations, deletion, and epigenetic inactivation of FOXP3 are widespread among human breast and prostate cancers.
View Article and Find Full Text PDFAccumulation of unfolded protein within the endoplasmic reticulum (ER) attenuates mRNA translation through PERK-mediated phosphorylation of eukaryotic initiation factor 2 on Ser51 of the alpha subunit (eIF2alpha). To elucidate the role of eIF2alpha phosphorylation, we engineered mice for conditional expression of homozygous Ser51Ala mutant eIF2alpha. The absence of eIF2alpha phosphorylation in beta cells caused a severe diabetic phenotype due to heightened and unregulated proinsulin translation; defective intracellular trafficking of ER cargo proteins; increased oxidative damage; reduced expression of stress response and beta-cell-specific genes; and apoptosis.
View Article and Find Full Text PDFType 2 diabetes is a disorder of hyperglycemia resulting from failure of beta cells to produce adequate insulin to accommodate an increased metabolic demand. Here we show that regulation of mRNA translation through phosphorylation of eukaryotic initiation factor 2 (eIF2alpha) is essential to preserve the integrity of the endoplasmic reticulum (ER) and to increase insulin production to meet the demand imposed by a high-fat diet. Accumulation of unfolded proteins in the ER activates phosphorylation of eIF2alpha at Ser51 and inhibits translation.
View Article and Find Full Text PDF