Publications by authors named "M A Quinn-Allen"

Human coagulation FXa (Factor Xa) plays a key role in blood coagulation by activating prothrombin to thrombin on 'stimulated' platelet membranes in the presence of its cofactor FVa (Factor Va). PS (phosphatidylserine) exposure on activated platelet membranes promotes prothrombin activation by FXa by allosterically regulating FXa. To identify the structural basis of this allosteric regulation, we used FRET to monitor changes in FXa length in response to (i) soluble short-chain PS [C6PS (dicaproylphosphatidylserine)], (ii) PS membranes, and (iii) FVa in the presence of C6PS and membranes.

View Article and Find Full Text PDF

Constituents of platelet membranes regulate the activity of the prothrombinase complex. We demonstrate that membranes containing phosphatidylcholine and phosphatidylethanolamine (PE) bind factor Va with high affinity (K(d) = ∼10 nm) in the absence of phosphatidylserine (PS). These membranes support formation of a 60-70% functional prothrombinase complex at saturating factor Va concentrations.

View Article and Find Full Text PDF

Tightly associated factor V(a) (FVa) and factor X(a) (FXa) serve as the essential prothrombin-activating complex that assembles on phosphatidylserine (PS)-containing platelet membranes during blood coagulation. We have previously shown that (1) a soluble form of PS (C6PS) triggers assembly of a fully active FVa-FXa complex in solution and (2) that 2 molecules of C6PS bind to FVa light chain with one occupying a site in the C2 domain. We expressed human factor V(a) (rFVa) with mutations in either the C1 domain (Y1956,L1957)A, the C2 domain (W2063,W2064)A, or both C domains (Y1956,L1957,W2063,W2064)A.

View Article and Find Full Text PDF

Activated coagulation factor V (FVa) is an important cofactor that accelerates thrombin production. In human blood, 25% of the factor V (FV) is stored in platelets, complexed to the polymeric, FV binding protein multimerin 1 (MMRN1). The light chain of FV is required for MMRN1 binding, and its C2 domain contains a MMRN1 binding site that overlaps phospholipid binding residues essential for FVa procoagulant function.

View Article and Find Full Text PDF

The binding of factor (FVa) to phosphatidylserine (PS) membranes regulates assembly of the prothrombinase complex. Two pairs of solvent-exposed amino acids, Tyr(1956)/Leu(1957) in the C1 domain and Trp(2063)/Trp(2064) in the C2 domain, each make significant contributions to the affinity of FVa for PS membranes, but individually neither pair of amino acids is required for prothrombinase assembly on 25% PS membranes. In this study we characterize a FVa mutant with alanine substitutions in both the C1 and C2 domains: (Y1956,L1957,W2063,W2064)A.

View Article and Find Full Text PDF