Publications by authors named "M A Pusheva"

It has been shown that the intracellular concentrations of Na+, K+, and Cl- ions in Desulfonatronum thiodismutans depend on the extracellular concentration of Na' ions. An increase in the extracellular concentration of Na+ results in the accumulation of K+ ions in cells, which points to the possibility that these ions perform an osmoprotective function. When the concentration of the NaCI added to the medium was increased to 4%, the concentration gradient of Cl- ions changed insignificantly.

View Article and Find Full Text PDF

The new mesophilic, chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium strain 11-6 could grow at a NaCl concentration in the medium of 30-230 g/l, with an optimum at 80-100 g/l. Cells were vibrios motile at the early stages of growth. Lactate, pyruvate, malate, fumarate, succinate, propionate, butyrate, crotonate, ethanol, alanine, formate, and H2 + CO2 were used in sulfate reduction.

View Article and Find Full Text PDF

The activity and cellular localization of carboanhydrase (CA) in two alkaliphilic anaerobes growing in soda lakes at pH 9-10 was studied. CA activity in the cell extracts of the acetogenic bacterium Natroniella acetigena was comparable to that of the neutrophilic acetogens. Hydrogenotrophically grown cells of Desulfonatronum lacustre exhibited higher CA activity compared to the cells grown on media with formate.

View Article and Find Full Text PDF

This review summarizes the recent data on the energy metabolism of acetogenic bacteria isolated from saline and soda lakes. It provides a general description of saline and soda lakes as microbial habitats, performs a comparative analysis of the energy metabolism of neutrophilic acetogens, considers the adaptation strategies of halophilic and alkalophilic acetogens to high salinity and high pH values, while also discussing the mechanisms of energy accumulation under auto- and organotrophic conditions.

View Article and Find Full Text PDF

The adaptation of microorganisms to life in brines allows two strategies: the accumulation of organic osmoregulators in the cell (as in many moderate halophiles, halomonads in particular) or the accumulation of inorganic ions at extremely high intracellular concentrations (as, for example, in haloanaerobes). To reveal the regularities of osmoregulation in haloalkaliphiles developing in soda lakes, Halomonas campisalis Z-7398-2 and Halomonas sp. AIR-2 were chosen as representatives of halomonads, and Natroniella acetigena, as a representative of haloanaerobes.

View Article and Find Full Text PDF