Over the last decade there has been tremendous growth in the development of accelerated MD pathways that allow medical students to graduate in three years. Developing an accelerated pathway program requires commitment from students and faculty with intensive re-thinking and altering of the curriculum to ensure adequate content to achieve competency in an accelerated timeline. A re-visioning of assessment and advising must follow and the application of AI and new technologies can be added to support teaching and learning.
View Article and Find Full Text PDFBackground: Teaching clinical pharmacology is often a challenge for medical schools. The benefits and popularity of active recall and spaced repetition through Anki flashcards are well-established and can offer a solution for teaching complex topics, but educators are often unfamiliar with this resource.
Approach: We implemented 501 faculty-generated pharmacology flashcards in five modules across the medical preclinical curriculum, available to 104 first-year students.
In experiments considering cell handling in microchannels, cell sedimentation in the storage container is a key problem because it affects the reproducibility of the experiments. Here, a simple and low-cost cell mixing device (CMD) is presented; the device is designed to prevent the sedimentation of cells in a syringe during their injection into a microfluidic channel. The CMD is based on a slider crank device made of 3D-printed parts that, combined with a permanent magnet, actuate a stir bar placed into the syringe containing the cells.
View Article and Find Full Text PDFSepsis is accompanied by a less-known mismatch between hemodynamics and mitochondrial respiration. We aimed to characterize the relationship and time dependency of microcirculatory and mitochondrial functions in a rodent model of intraabdominal sepsis. Fecal peritonitis was induced in rats, and multi-organ failure (MOF) was evaluated 12, 16, 20, 24 or 28 h later (n = 8/group, each) using rat-specific organ failure assessment (ROFA) scores.
View Article and Find Full Text PDFMagnetic beads (or particles) having a size between 1 and 5 µm are largely used in many biochemical assays devoted to both purification and quantification of cells, nucleic acids, or proteins. Unfortunately, the use of these beads within microfluidic devices suffers from natural precipitation because of their size and density. The strategies applied thus far to cells or polymeric particles cannot be extended to magnetic beads, mainly due to their magnetization and their higher densities.
View Article and Find Full Text PDF