Publications by authors named "M A Musarella"

Postnatal formation of the neuromuscular synapse requires complex interactions among nerve terminal, muscle fibres and terminal Schwann cells. In motor endplate disease (med) mice, neuromuscular transmission is severely impaired without alteration of axonal conduction and a lethal paralytic phenotype occurs during the postnatal period. The med phenotype appears at a crucial stage of the neuromuscular junction development, corresponding to the increase in terminal Schwann cell number, the elimination of the multiple innervations and the pre- and postsynaptic maturation.

View Article and Find Full Text PDF

Inherited retinal degenerations, including retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA), affect 1 in 4000 individuals in the general population. A majority of the genes which are mutated in these conditions are expressed in either photoreceptors or the retinal pigment epithelium (RPE). There is considerable variation in the clinical severity of these conditions; the most severe being autosomal recessive LCA, a heterogeneous retinal degenerative disease and the commonest cause of congenital blindness in children.

View Article and Find Full Text PDF

Purpose: Leber congenital amaurosis (LCA) and juvenile retinitis pigmentosa (RP) cause severe visual impairment early in life. Thus far, mutations in 13 genes have been associated with autosomal recessive LCA and juvenile RP. The purpose of this study was to use homozygosity mapping to identify mutations in known LCA and juvenile RP genes.

View Article and Find Full Text PDF

In addition to their role in action potential generation and fast synaptic transmission in neurons, voltage-dependent sodium channels can also be active in glia. Terminal Schwann cells (TSCs) wrap around the nerve terminal arborization at the neuromuscular junction, which they contribute to shape during development and in the postdenervation processes. Using fluorescent in situ hybridization (FISH), immunofluorescence, and confocal microscopy, we detected the neuronal Nav1.

View Article and Find Full Text PDF

True lens coloboma is a rare developmental disorder usually caused by missing lens zonules in the equatorial area of the lens. Bilateral cases are rare. We report bilateral superonasal lens colobomas in two brothers whose parents are first cousins.

View Article and Find Full Text PDF