Spin valves with a synthetic antiferromagnet were fabricated via magnetron sputtering. It was shown that the fabricated spin valve layers had a perfect microstructure and smooth interfaces, and therefore, an RKKY interaction dominated in the coupling of the ferromagnetic layers separated by a copper spacer. Rhombus-shaped micro-objects were fabricated from a single spin valve film.
View Article and Find Full Text PDFMössbauer reflectivity spectra and nuclear resonance reflectivity (NRR) curves have been measured using the Synchrotron Mössbauer Source (SMS) for a [Fe/Cr] periodic multilayer, characterized by the antiferromagnetic interlayer coupling between adjacent Fe layers. Specific features of the Mössbauer reflectivity spectra measured with π-polarized radiation of the SMS near the critical angle and at the `magnetic' maximum on the NRR curve are analyzed. The variation of the ratio of lines in the Mössbauer reflectivity spectra and the change of the intensity of the `magnetic' maximum under an applied external field has been used to reveal the transformation of the magnetic alignment in the investigated multilayer.
View Article and Find Full Text PDFA mechanism of unidirectional exchange anisotropy formation at thermo-magnetic treatment of permalloy-manganese bilayers has been studied. A shift of hysteresis loops appears at annealing beginning from 230 degrees C. The maximal exchange field of 155 Oe is reached after the 250 degrees C annealing for 2 h.
View Article and Find Full Text PDFFeMn-based top spin valves Ta/[FeNi/CoFe]/Cu/CoFe/FeMn/Ta with different Cu and FeMn layers thicknesses were prepared by DC magnetron sputtering at room temperature. It was shown that low field hysteresis due to free layer magnetization reversal can be reduced down to (0.1 divided by 0.
View Article and Find Full Text PDF