Background: Cancer recurrence is regulated by a variety of factors, among which is the material of dying tumor cells; it is suggested that remaining after anti-cancer therapy tumor cells receive a signal from proteins called damage-associated molecular patterns (DAMPs), one of which is heat shock protein 70 (Hsp70).
Methods: Two models of tumor repopulation were employed, based on minimal population of cancer cells and application of conditioned medium (CM). To deplete the CMs of Hsp70 affinity chromatography on ATP-agarose and immunoprecipitation were used.
The paper presents a new model of secondary injuries after traumatic brain injury. The model is based on the cultivation of rat embryonic fibroblasts reprogrammed to a neuronal phenotype in the presence of cerebrospinal fluid from injured rats. The presented model was used to test the therapeutic effect of inducers of the synthesis of chaperones from the classes of pyrrolylazines and indolylazines, which have neuroprotective properties.
View Article and Find Full Text PDFTumor recurrence is a paradoxical function of a machinery, whereby a small proportion of the cancer cell population enters a resistant, dormant state, persists long-term in this condition, and then transitions to proliferation. The dormant phenotype is typical of cancer stem cells, tumor-initiating cells, disseminated tumor cells, and drug-tolerant persisters, which all demonstrate similar or even equivalent properties. Cancer cell dormancy and its conversion to repopulation are regulated by several protein signaling systems that inhibit or induce cell proliferation and provide optimal interrelations between cancer cells and their special niche; these systems act in close connection with tumor microenvironment and immune response mechanisms.
View Article and Find Full Text PDFHypoxia, which commonly accompanies tumor growth, depending on its strength may cause the enhancement of tumorigenicity of cancer cells or their death. One of the proteins targeted by hypoxia is glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and we demonstrated here that hypoxia mimicked by treating C6 rat glioblastoma cells with cobalt chloride caused an up-regulation of the enzyme expression, while further elevation of hypoxic stress caused the enzyme aggregation concomitantly with cell death. Reduction or elevation of GAPDH performed with the aid of specific shRNAs resulted in the augmentation of the tumorigenicity of C6 cells or their sensitization to hypoxic stress.
View Article and Find Full Text PDFThe heat shock protein Hsp70 is involved in cell defense from various types of stress, including the proteotoxic stress, which occurs during the development of many neurodegenerative diseases. This work presents data on the detection of small molecules, derivatives of indolyl- and pyrrolylazines, which can activate the synthesis of Hsp70 and cause its accumulation in the cell. The toxicity level of the new Hsp70 synthesis inducers was evaluated, and the safety of these compounds was demonstrated in experiments on SH-SY5Y neuroblastoma cell line.
View Article and Find Full Text PDF