Publications by authors named "M A Melkumov"

Multicore fibers are promising structures with specific light propagation properties, which can be managed to benefit several applications in optical communications, fiber lasers and amplifiers, high-resolution imaging, and fiber-based sensors. The current use of multicore fibers in laser technology is mainly focused on in-phase coherent beam combining in far-field regions (out-cavity) using bulk optical elements. However, this approach is challenging in terms of the power scalability of all-fiber lasers (intra-cavity), particularly with using low-gain media, where it is needed to provide mode-coupling (supermode propagation) stability along relatively long lengths.

View Article and Find Full Text PDF

Polarization-dependent gain (PDG) effect was studied in a conventional core-pumping configuration of bismuth-doped fiber amplifiers (BDFAs) based on PANDA-type phospho- and germanosilicate core fibers. The PDG value was determined as the gain difference between the orthogonal signal polarizations, which was found to be in range of 2.5-3 dB at total gain of >20 dB in such BDFAs.

View Article and Find Full Text PDF

We report, to the best of our knowledge, the first demonstration of an O + E-band tunable watt-level bismuth-doped phosphosilicate fiber laser and its frequency doubling to tunable red laser. Benefiting from the two types of bismuth active centers associated with silicon and phosphorus introduced in one fiber, an ultrabroad gain is available in the designed low-water-peak bismuth-doped phosphosilicate fiber (Bi-PSF) pumped by a self-made 1239 nm Raman fiber laser. The high-efficiency tunable lasing is achieved with a maximum output power of 1.

View Article and Find Full Text PDF

In this Letter, we investigated the potential scalability of output power of a cladding-pumped laser and a power amplifier (booster) based on a multimode Bi-doped fiber (BDF) using the mode-selection approach. We fabricated the multimode double-clad graded-index (GRIN) fiber with a confined Bi-doped germanosilicate glass core with a diameter of ≈30 and ≈60 µm. Using femtosecond (fs) inscription technology with high spatial resolution, Bragg gratings of a special transverse structure allowing the selection of low-order modes were written into the core of BDFs.

View Article and Find Full Text PDF

Bismuth-doped fibers (BDFs) are considered nowadays as an essential part of the development of novel optical amplifiers, which can provide a significant upgrade to existing fiber optic telecommunication systems, securing multiband data transmission. In this paper, a series of BDF amplifiers (BDFAs) for O-, E-, and S-telecom bands based on a cladding pumping scheme using low-cost multimode semiconductor laser diodes at a wavelength of 0.7-0.

View Article and Find Full Text PDF