We present an analysis of the signal properties of a position-sensitive solid-state photomultiplier (PS-SSPM) that has an integrated resistive network for position sensing. Attractive features of PS-SSPMs are their large area and ability to resolve small scintillator crystals. However, the large area leads to a high detector capacitance, and in order to achieve high spatial resolution a large network resistor value is required.
View Article and Find Full Text PDFThis paper evaluates the performance of two large-area position-sensitive solid-state photomultipliers (PS-SSPM) for use in small animal PET detector designs. Both PS-SSPM device designs are 1 cm² in area, the first being a 2 × 2 tiled array of 5 mm × 5 mm PS-SSPMs and the second being a 10 mm × 10 mm continuous PS-SSPM. Signal-to-noise measurements were performed to investigate the optimal operating parameters for each device and to compare the performance of the two PS-SSPM designs.
View Article and Find Full Text PDFWe investigated the dependence of image quality on the temperature of a position sensitive avalanche photodiode (PSAPD)-based small animal single photon emission computed tomography (SPECT) gamma camera with a CsI:Tl scintillator. Currently, nitrogen gas cooling is preferred to operate PSAPDs in order to minimize the dark current shot noise. Being able to operate a PSAPD at a relatively high temperature (e.
View Article and Find Full Text PDFWe demonstrate a position sensitive avalanche photodiode (PSAPD) based compact gamma camera for the application of small animal single photon emission computed tomography (SPECT). The silicon PSAPD with a two-dimensional resistive layer and four readout channels is implemented as a gamma ray detector to record the energy and position of radiation events from a radionuclide source. A 2 mm thick monolithic CsI:Tl scintillator is optically coupled to a PSAPD with a 8mm×8mm active area, providing submillimeter intrinsic spatial resolution, high energy resolution (16% full-width half maximum at 140 keV) and high gain.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res A
December 2010
Solid-state photomultipliers (SSPMs) are a compact, lightweight, potentially low-cost alternative to a photomultiplier tube for a variety of scintillation detector applications, including digital-dosimeter and medical-imaging applications. Manufacturing SSPMs with a commercial CMOS process provides the ability for rapid prototyping, and facilitates production to reduce the cost. RMD designs CMOS SSPM devices that are fabricated by commercial foundries.
View Article and Find Full Text PDF