Background: Patients on maintenance hemodialysis (HD) face complications due to the accumulation of protein-bound uremic toxins, such as advanced glycation end products (AGEs), which contribute to inflammation, oxidative stress, and cardiovascular disease. Conventional HD techniques inadequately remove AGEs. This study evaluates the efficacy of the HA130 hemoadsorption cartridge combined with high-flux HD (HF-HD) in enhancing AGE removal.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
The regulation of heart function is attributed to a dual filament mechanism: i) the Ca-dependent structural changes in the regulatory proteins of the thin, actin-containing filament making actin available for myosin motor attachment, and ii) the release of motors from their folded (OFF) state on the surface of the thick filament allowing them to attach and pull the actin filament. Thick filament mechanosensing is thought to control the number of motors switching ON in relation to the systolic performance, but its molecular basis is still controversial. Here, we use high spatial resolution X-ray diffraction data from electrically paced rat trabeculae and papillary muscles to provide a molecular explanation of the modulation of heart performance that calls for a revision of the mechanosensing hypothesis.
View Article and Find Full Text PDFMost embedding media for live and fixed samples were not designed for microscopy and have issues including long polymerization times, peak of toxicity toward the sample during the sol-gel transition, and irreversibility of this transition. Gels derived from biological sources are widely used in microscopy, but their precise composition is ill-defined and can vary between batches. Non-physiological temperatures and/or specific enzymatic solutions are often needed to revert the gel back to the sol state to allow sample recovery.
View Article and Find Full Text PDF