Remote thermal sensing has emerged as a temperature detection technique for tasks in which standard contact thermometers cannot be used due to environment or dimension limitations. One of such challenging tasks is the measurement of temperature in microelectronics. Here, optical thermometry using co-doped and mixed dual-center GdO:Tb/Eusamples were realized.
View Article and Find Full Text PDFModification of T-lymphocytes, which are capable of paracellular transmigration is a promising trend in modern personalized medicine. However, the delivery of required concentrations of functionalized T-cells to the target tissues remains a problem. We describe a novel method to functionalize T-cells with magnetic nanocapsules and target them with electromagnetic tweezers.
View Article and Find Full Text PDFWhile microbubbles (MB) are routinely used for ultrasound (US) imaging, magnetic MB are increasingly explored as they can be guided to specific sites of interest by applied magnetic field gradient. This requires the MB shell composition tuning to prolong MB stability and provide functionalization capabilities with magnetic nanoparticles. Hence, we developed air-filled MB stabilized by a protein-polymer complex of bovine serum albumin (BSA) and poly-L-arginine (pArg) of different molecular weights, showing that pArg of moderate molecular weight distribution (15-70 kDa) enabled MB with greater stability and acoustic response while preserving MB narrow diameters and the relative viability of THP-1 cells after 48 h of incubation.
View Article and Find Full Text PDFHemangioma, the predominant benign tumor occurring in infancy, exhibits a wide range of prognoses and associated outcomes. The accurate determination of prognosis through noninvasive imaging modalities holds essential importance in enabling effective personalized treatment strategies and minimizing unnecessary surgical interventions for individual patients. The present study focuses on advancing the personalized prognosis of hemangioma by leveraging noninvasive optical sensing technologies by the development of a novel rapid hyperspectral sensor (image collection in 5 s, lateral resolution of 10 μm) that is capable of quantifying hemoglobin oxygenation and vascularization dynamics during the course of tumor evolution.
View Article and Find Full Text PDFA stimuli-responsive polymeric three-dimensional microstructured film (PTMF) is a 3D structure with an array of sealed chambers on its external surface. In this work, we demonstrate the use of PTMF as a laser-triggered stimulus-response system for local in vivo targeted blood vessels stimulation by vasoactive substances. The native vascular networks of the mouse mesentery were used as model tissues.
View Article and Find Full Text PDF