Electron paramagnetic resonance (EPR) is a spectroscopic method for investigating structures, conformational changes, and dynamics of biomacromolecules, for example, oligonucleotides. In order to be applicable, the oligonucleotide has to be labeled site-specifically with paramagnetic tags, the so-called spin labels. Here, we provide a protocol for spin labeling of long oligonucleotides with nitroxides.
View Article and Find Full Text PDFSite-directed spin labeling is a powerful tool for investigating the conformation and dynamics of biomacromolecules such as RNA. Here we introduce a spin labeling strategy based on click chemistry in solution that, in combination with enzymatic ligation, allows highly efficient labeling of complex and long RNAs with short reaction times and suppressed RNA degradation. With this approach, a 34-nucleotide aptamer domain of the preQ1 riboswitch and an 81-nucleotide TPP riboswitch aptamer could be labeled with two labels in several positions.
View Article and Find Full Text PDFSite-directed spin labeling of RNA based on click chemistry is used in combination with pulsed electron-electron double resonance (PELDOR) to benchmark a nitroxide spin label, called here dŲ. We compare this approach with another established method that employs the rigid spin label Çm for RNA labeling. By using CD spectroscopy, thermal denaturation measurements, CW-EPR as well as PELDOR we analyzed and compared the influence of dŲ and Çm on a self-complementary RNA duplex.
View Article and Find Full Text PDFMonoclon Antib Immunodiagn Immunother
October 2014
Cancer antigen 125 (CA-125) is the most widely used tumor marker for ovarian cancer. Thus, monoclonal antibodies (MAbs) against CA-125 are valuable reagents for the development of diagnostic tests and immunotherapy. We describe here the generation and characterization of three novel hybridoma cell lines producing MAbs against CA-125.
View Article and Find Full Text PDFPurpose: We aimed to develop and validate the first robotic-based instrument and procedure for assessing upper extremity motor impairments in patients with stroke and to test its discriminative power.
Methods: The ReoGo robotic rehabilitation platform was used to design a novel, upper limb functionality assessment tool, the Reo Scale Assessment (RSA). We used the RSA to evaluate 100 patients with stroke.