Ways of improving the optical efficiency of luminescent solar concentrators based on multiple poly(methyl methacrylate) plastic optical fibers peripherally doped with two promising types of dyes are analyzed by means of a Monte-Carlo computational model developed by us. By comparing the performance of optical fibers doped with lumogen red and lumogen yellow, or combinations of them at several concentrations, this work clarifies how to achieve a better compromise between the trapping efficiency of the sunlight and the reabsorption of the light emitted by the mixture in stacked optical fibers connected to a photovoltaic solar cell.
View Article and Find Full Text PDFIn this paper, useful models that enable time-efficient computational analyses of the performance of luminescent solar concentrators (LSCs) are developed and thoroughly described. These LSCs are based on polymer optical fibers codoped with organic dyes and/or europium chelates. The interest in such dopants lies in the availability of new dyes with higher quantum yields and in the photostability and suitable absorption and emission bands of europium chelates.
View Article and Find Full Text PDFA comprehensive model for the theoretical simulation of luminescent solar concentrators (LSCs) has been developed and examined. It can simulate the interdependent effects of multiple dopants having two main electronic energy states, which are incorporated simultaneously into the fiber core, as well as the effect of the cladding. The available experimental results appear to confirm the accuracy of the model, which is a valuable tool for gaining insight into the behavior of LSC prototypes, since it may guide the designers at the early stages of optimization processes.
View Article and Find Full Text PDFIn this work, we detail two types of fabrication processes of four polymer optical fibers doped with lumogen dyes. The fiber preforms have been manufactured with two different methods: extrusion and casting. We have compared the performance of the two types of fibers as luminescent solar concentrators by calculating their optical efficiencies and concentration factors.
View Article and Find Full Text PDFThis work reports on a diameter dependence analysis of the performance as luminescent solar concentrators of three self-fabricated polymer optical fibers (POFs) doped with a hybrid combination of dopants. The works carried out include the design and self-fabrication of the different diameter fibers; an experimental analysis of the output power, of the output irradiance and of the fluorescent fiber solar concentrator efficiency; a comparison of the experimental results with a theoretical model; a study of the performance of all the fibers under different simulated lighting conditions; and a calculation of the active fiber length of each of the samples, all of them as a function of the fiber core diameter. To the best of our knowledge, this paper reports the first analysis of the influence of the POF diameter for luminescent solar concentration applications.
View Article and Find Full Text PDF