Publications by authors named "M A Hurle"

Diabetic cardiomyopathy (DCM) is a specific type of myocardial disease that often develops in patients suffering from diabetes, which has become the foremost cause of death among them. It is an insidious multifactorial disease caused by complex and partially unknown mechanisms that include metabolic dysregulation, local inflammation, fibrosis, and cardiomyocyte apoptosis. Despite its severity and poor prognosis, it often goes undiagnosed, and there are currently no approved specific drugs to prevent or even treat it.

View Article and Find Full Text PDF
Article Synopsis
  • * Previous research found that increasing miR-30c levels can worsen neuropathic pain, while reducing it can prevent pain onset and reverse allodynia.
  • * This study focused on the role of miR-30c-5p, revealing that it worsens neuron damage and stress in the DRG after nerve injury, suggesting that targeting miR-30c-5p could offer a new way to treat neuropathic pain.
View Article and Find Full Text PDF

Neuropathic pain is a prevalent and severe chronic syndrome, often refractory to treatment, whose development and maintenance may involve epigenetic mechanisms. We previously demonstrated a causal relationship between miR-30c-5p upregulation in nociception-related neural structures and neuropathic pain in rats subjected to sciatic nerve injury. Furthermore, a short course of an miR-30c-5p inhibitor administered into the cisterna magna exerts long-lasting antiallodynic effects via a TGF-β1-mediated mechanism.

View Article and Find Full Text PDF

Aortic stenosis (AS) exposes the left ventricle (LV) to pressure overload leading to detrimental LV remodeling and heart failure. In animal models of cardiac injury or hemodynamic stress, bone morphogenetic protein-7 (BMP7) protects LV against remodeling by counteracting TGF-β effects. BMP receptor 1A (BMPR1A) might mediate BMP7 antifibrotic effects.

View Article and Find Full Text PDF

Genetic evidence of disease association has often been used as a basis for selecting of drug targets for complex common diseases. Likewise, the propagation of genetic evidence through gene or protein interaction networks has been shown to accurately infer novel disease associations at genes for which no direct genetic evidence can be observed. However, an empirical test of the utility of combining these approaches for drug discovery has been lacking.

View Article and Find Full Text PDF