Publications by authors named "M A Hobin"

While neurotransmitter identity was once considered singular and immutable for mature neurons, it is now appreciated that one neuron can release multiple neuroactive substances (cotransmission) whose identities can even change over time. To explore the mechanisms that tune the suite of transmitters a neuron releases, we developed transcriptional and translational reporters for cholinergic, glutamatergic, and GABAergic signaling in . We show that many glutamatergic and GABAergic cells also transcribe cholinergic genes, but fail to accumulate cholinergic effector proteins.

View Article and Find Full Text PDF

Unlabelled: While neurotransmitter identity was once considered singular and immutable for mature neurons, it is now appreciated that one neuron can release multiple neuroactive substances (co-transmission) whose identities can even change over time. To explore the mechanisms that tune the suite of transmitters a neuron releases, we developed transcriptional and translational reporters for cholinergic, glutamatergic, and GABAergic signaling in . We show that many glutamatergic and GABAergic cells also transcribe cholinergic genes, but fail to accumulate cholinergic effector proteins.

View Article and Find Full Text PDF

Sleep circuitry evolved to have both dedicated and context-dependent modulatory elements. Identifying modulatory subcircuits and understanding their molecular machinery is a major challenge for the sleep field. Previously, we identified 25 sleep-regulating microRNAs in , including the developmentally important microRNA .

View Article and Find Full Text PDF

To discover microRNAs that regulate sleep, we performed a genetic screen using a library of miRNA sponge-expressing flies. We identified 25 miRNAs that regulate baseline sleep; 17 were sleep-promoting and 8 promoted wake. We identified one miRNA that is required for recovery sleep after deprivation and 8 miRNAs that limit the extent of recovery sleep.

View Article and Find Full Text PDF

The amygdala, prefrontal cortex, striatum and other connected forebrain areas are important for reward-associated learning and subsequent behaviors. How these structurally and functionally dissociable regions are recruited during initial learning, however, is unclear. Recently, we showed amygdalar nuclei were differentially recruited across different stages of cue-food associations in a Pavlovian conditioning paradigm.

View Article and Find Full Text PDF