Front Immunol
August 2024
The COVID-19 pandemic has uncovered the high genetic variability of the SARS-CoV-2 virus and its ability to evade the immune responses that were induced by earlier viral variants. Only a few monoclonal antibodies that have been reported to date are capable of neutralizing a broad spectrum of SARS-CoV-2 variants. Here, we report the isolation of a new broadly neutralizing human monoclonal antibody, iC1.
View Article and Find Full Text PDFThis study reviews chronologically the international scientific and health management literature and resources relating to impacts of highly pathogenic avian influenza (HPAI) viruses on pinnipeds in order to reinforce strategies for the conservation of the endangered Caspian seal (), currently under threat from the HPAI H5N1 subtype transmitted from infected avifauna which share its haul-out habitats. Many cases of mass pinniped deaths globally have occurred from HPAI spill-overs, and are attributed to infected sympatric aquatic avifauna. As the seasonal migrations of Caspian seals provide occasions for contact with viruses from infected migratory aquatic birds in many locations around the Caspian Sea, this poses a great challenge to seal conservation.
View Article and Find Full Text PDFThe emergence of SARS-CoV-2 mutant variants has posed a significant challenge to both the prevention and treatment of COVID-19 with anti-coronaviral neutralizing antibodies. The latest viral variants demonstrate pronounced resistance to the vast majority of human monoclonal antibodies raised against the ancestral Wuhan variant. Less is known about the susceptibility of the evolved virus to camelid nanobodies developed at the start of the pandemic.
View Article and Find Full Text PDFBackground: SARS-CoV-2 can enter the environment from the feces of COVID-19 patients and virus carriers through untreated sewage. The virus has shown the ability to adapt to a wide range of hosts, so the question of the possible involvement of aquafauna and animals of coastal ecosystems in maintaining its circulation remains open.
Methods: the aim of this work was to study the tropism of SARS-CoV-2 for cells of freshwater fish and reptiles, including those associated with aquatic and coastal ecosystems, and the effect of ambient temperature on this process.