Publications by authors named "M A Gryzinski"

Purpose: Prior to 90Y radioembolization procedure, a pretherapy simulation using 99mTc-MAA is performed. Alternatively, a small dosage of 90Y microspheres could be used. We aimed to assess the accuracy of lung shunt fraction (LSF) estimation in both high activity 90Y posttreatment and pretreatment scans with isotope activity of ~100 MBq, using different imaging techniques.

View Article and Find Full Text PDF

The aim of the study is to show a method of real-time determination of the dose deposited in a tissue-like medium by α-particles emitted from the 10B(n,α)7Li reaction. The applied research method is to determine the correlation between the measured density of α-particle traces and measured in real time the 478 keV prompt-gamma rays derived from the 10B(n,α)7Li reaction. To achieve this aim, an appropriate construction of an experimental set-up is needed.

View Article and Find Full Text PDF

In this study, the influence of additional 10B4C polarizing electrodes coating on KW-1 multisignal ionization chamber performance was investigated. Using the FLUKA Monte Carlo code energy deposition, neutron fluence and neutron track-length distributions were simulated. Further calculations allow us to obtain response functions for monoenergetic neutron beams in the energy range from 1 meV to 30 MeV.

View Article and Find Full Text PDF

Extremely important aspects of the boron neutron capture therapy are, first of all, administering to the patient a boron compound that selectively reaches the neoplastic cells, and in the second step, the verification of the irradiation process. This paper focuses on the latter aspect, which is the detailed dosimetry of the processes occurring after the reaction of thermal neutrons with the boron-10 isotope. The results of computer simulations with the use of a new type of human head phantom filled with a polymer dosimetric gel will be presented in this article.

View Article and Find Full Text PDF

In the study, the passive multi-layer neutron spectrometer, based on thermoluminescence detectors, was tested in a calibration laboratory with 239Pu-Be and 252Cf isotopic sources. MCNP code was used for the calculation of the response functions for the neutron energy range from 1 meV to 100 MeV. It was also utilised for initial guess spectra calculations.

View Article and Find Full Text PDF