Publications by authors named "M A F Sonnemans"

Background: The efficacy and safety of intracerebral gene therapy for brain disorders like Parkinson's disease depends on the appropriate distribution of gene expression.

Objectives: To assess whether the distribution of gene expression is affected by vector titer and protein type.

Methods: Four adult macaque monkeys seronegative for adeno-associated virus 5 (AAV5) received a 30-µl inoculation of a high- or a low-titer suspension of AAV5 encoding glial cell line-derived neurotrophic factor (GDNF) or green fluorescent protein (GFP) in the right and left ventral postcommissural putamen.

View Article and Find Full Text PDF

Frameshift (+1) proteins such as APP(+1) and UBB(+1) accumulate in sporadic cases of Alzheimer disease (AD) and in older subjects with Down syndrome (DS). We investigated whether these proteins also accumulate at an early stage of neuropathogenesis in young DS individuals without neuropathology and in early-onset familial forms of AD (FAD), as well as in other tauopathies, such as Pick disease (PiD) or progressive supranuclear palsy (PSP). APP(+1) is present in many neurons and beaded neurites in very young cases of DS, which suggests that it is axonally transported.

View Article and Find Full Text PDF

Frame-shifted amyloid precursor protein (APP(+1)), which has a truncated out-of-frame C-terminus, accumulates in the neuropathological hallmarks of patients with Alzheimer's disease pathology. To study a possible involvement of APP(+1) in the pathogenesis of Alzheimer's disease, we expressed APP695 and APP(+1) in the HEK293 cell-line and studied whether the processing of APP695 was affected. APP(+1) is a secretory protein, but high expression of APP695 and APP(+1) results in the formation of intracellular aggregate-like structures containing both proteins and Fe65, an adaptor protein that interacts with APP695.

View Article and Find Full Text PDF

Molecular misreading of the ubiquitin-B (UBB) gene results in a dinucleotide deletion in UBB mRNA. The resulting mutant protein, UBB+1, accumulates in the neuropathological hallmarks of Alzheimer disease. In vitro, UBB+1 inhibits proteasomal proteolysis, although it is also an ubiquitin fusion degradation substrate for the proteasome.

View Article and Find Full Text PDF

Glial fibrillary acidic protein (GFAP) is considered to be a highly specific marker for glia. Here, we report on the expression of GFAP in neurons in the human hippocampus. Intriguingly, this neuronal GFAP is coded by out-of-frame splice variants and its expression is associated with Alzheimer pathology.

View Article and Find Full Text PDF