RF-sputtering is used to deposit TiO-Magneli-phase films onto various substrates at deposition temperatures (T) ranging from 25 to 650 °C. Not only the structural, but also electrical conductivity, optical absorbance and photothermal properties of the TiO films are shown to change significantly with T. A T of 500 °C is pointed out as the optimal temperature that yields highly-crystalized pure-TiO-Magneli phase with a densely-packed morphology and a conductivity as high as 740 S/cm.
View Article and Find Full Text PDFWe report the pulsed laser deposition (PLD) of nanocrystalline/amorphous homo-composite BaTiO (BTO) films exhibiting an unprecedented combination of a colossal dielectric constant () and extremely low dielectric loss (tan ). By varying the substrate deposition temperature () over a wide range (300-800 °C), we identified = 550 °C as the optimal temperature for growing BTO films with an as high as ~3060 and a tan as low as 0.04 (at 20 kHz).
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFAS) have become a growing environmental concern due to their tangible impacts on human health. However, due to the large number of PFAS compounds and the analytical difficulty to identify all of them, there are still some knowledge gaps not only on their impact on human health, but also on how to manage them and achieve their effective degradation. PFAS compounds originate from man-made chemicals that are resistant to degradation because of the presence of the strong carbon-fluorine bonds in their chemical structure.
View Article and Find Full Text PDFThe photocatalytic degradation of methylene blue is a straightforward and cost-effective solution for water decontamination. Although many materials have been reported so far for this purpose, the proposed solutions inflicted high fabrication costs and low efficiencies. Here, we report on the synthesis of tetragonal (1T) and hexagonal (2H) mixed molybdenum disulfide (MoS) heterostructures for an improved photocatalytic degradation efficiency by means of a single-step chemical vapor deposition (CVD) technique.
View Article and Find Full Text PDF