Oncolytic virotherapy is a promising approach for cancer treatment. However, when introduced into the body, the virus provokes the production of virus-neutralizing antibodies, which can reduce its antitumor effect. To shield viruses from the immune system, aptamers that can cover the membrane of the viral particle are used.
View Article and Find Full Text PDFAptamers are currently being investigated for their potential to improve virotherapy. They offer several advantages, including the ability to prevent the aggregation of viral particles, enhance target specificity, and protect against the neutralizing effects of antibodies. The purpose of this study was to comprehensively investigate an aptamer capable of enhancing virotherapy.
View Article and Find Full Text PDFOncolytic virotherapy is a rapidly evolving approach that aims to selectively kill cancer cells. We designed a promising recombinant vaccinia virus, VV-GMCSF-Lact, for the treatment of solid tumors, including glioma. We assessed how VV-GMCSF-Lact affects human cells using immortalized and patient-derived glioma cultures and a non-malignant brain cell culture.
View Article and Find Full Text PDFHere, we present DNA aptamers capable of specific binding to glial tumor cells , , and for visualization diagnostics of central nervous system tumors. We selected the aptamers binding specifically to the postoperative human glial primary tumors and not to the healthy brain cells and meningioma, using a modified process of systematic evolution of ligands by exponential enrichment to cells; sequenced and analyzed ssDNA pools using bioinformatic tools and identified the best aptamers by their binding abilities; determined three-dimensional structures of lead aptamers (Gli-55 and Gli-233) with small-angle X-ray scattering and molecular modeling; isolated and identified molecular target proteins of the aptamers by mass spectrometry; the potential binding sites of Gli-233 to the target protein and the role of post-translational modifications were verified by molecular dynamics simulations. The anti-glioma aptamers Gli-233 and Gli-55 were used to detect circulating tumor cells in liquid biopsies.
View Article and Find Full Text PDFCombination therapy is becoming an increasingly important treatment strategy because multi-drugs can maximize therapeutic effect and overcome potential mechanisms of drug resistance. A new albumin-based theranostic containing gemcitabine -dodecaborate analogue has been developed for combining boron neutron capture therapy (BNCT) and chemotheraphy. An exo-heterocyclic amino group of gemcitabine was used to introduce dodecaborate, and a 5'-hydroxy group was used to tether maleimide moiety through an acid-labile phosphamide linker.
View Article and Find Full Text PDF