The dysregulation of the hormone cortisol is related to several pathological states, and its monitoring could help prevent severe stress, fatigue, and mental diseases. While wearable antibody-based biosensors could allow real-time and simple monitoring of antigens, an accurate and low-cost antibody-based cortisol detection through electrochemical methods is considerably challenging due to its low concentration and the high ionic strength of real biofluids. Here, a label-free and fast sensor for cortisol detection is proposed based on antibody-coated organic electrochemical transistors.
View Article and Find Full Text PDFWe propose the first correct special-purpose quantum circuits for preparation of Bell diagonal states (BDS), and implement them on the IBM Quantum computer, characterizing and testing complex aspects of their quantum correlations in the full parameter space. Among the circuits proposed, one involves only two quantum bits but requires adapted quantum tomography routines handling classical bits in parallel. The entire class of Bell diagonal states is generated, and several characteristic indicators, namely entanglement of formation and concurrence, CHSH non-locality, steering and discord, are experimentally evaluated over the full parameter space and compared with theory.
View Article and Find Full Text PDFA systematic and simple theoretical approach is proposed to analyze true degeneracies and polarized decay patterns of exciton complexes in semiconductor quantum dots. The results provide reliable spectral signatures for efficient symmetry characterization, and predict original features for low C(2v) and high C(3v) symmetries. Excellent agreement with single quantum dot spectroscopy of real pyramidal InGaAs/AlGaAs quantum dots grown along [111] is demonstrated.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2007
We present a method to compute the smooth part of the density of states in a semiclassical expansion when the Hamiltonian contains a Coulomb potential and non-Cartesian coordinates are appropriate. We apply this method to the case of the hydrogen atom in a magnetic field with fixed z component of the angular momentum. This is then compared with numerical results obtained by a high precision finite element approach.
View Article and Find Full Text PDF