We report on the development and testing of a compact laser tweezers Raman spectroscopy (LTRS) system. The system combines optical trapping and near-infrared Raman spectroscopy for manipulation and identification of single biological cells in solution. A low-power diode laser at 785 nm was used for both trapping and excitation for Raman spectroscopy of the suspended microscopic particles.
View Article and Find Full Text PDFWe report on a rapid method for reagentless identification and discrimination of single bacterial cells in aqueous solutions using a combination of laser tweezers and confocal Raman spectroscopy (LTRS). The optical trapping enables capturing of individual bacteria in aqueous solution in the focus of the laser beam and levitating the captured cell well off the cover plate, thus maximizing the excitation and collection of Raman scattering from the cell and minimizing the unwanted background from the cover plate and environment. Raman spectral patterns excited by a near-infrared laser beam provide intrinsic molecular information for reagentless analysis of the optically isolated bacterium.
View Article and Find Full Text PDFIn this study we report on the dynamic motion of a nano-sized colloidal particle captured in a polarized optical trap. A polystyrene sphere (300nm-diameter) that is electrically charged in solution was trapped with an optical tweezers formed by a linearly polarized TEM00 Gaussian beam, while the Brownian displacements of the trapped particle in x and y directions were measured so that the position of the particle's mass center can be mapped on the transverse plane and the corss-correlation between x and y displacements can be calculated. We found that the position's fluctuation of the trapped nano-sized particle in the parallel direction to the laser polarization is significantly larger than that in the normal direction, which suggests that there exists an additional random electric force parallel to the laser polarization direction exerting on the charged particle beside the known radiation forces on the dielectric particle.
View Article and Find Full Text PDFWe report on real-time Raman spectroscopic studies of optically trapped living cells and organelles using an inverted confocal laser-tweezers-Raman-spectroscopy (LTRS) system. The LTRS system was used to hold a single living cell in a physiological solution or to hold a functional organelle within a living cell and consequently measured its Raman spectra. We have measured the changes in Raman spectra of a trapped yeast cell as the function of the temperature of the bathing solution and studied the irreversible cell degeneration during the heat denaturation.
View Article and Find Full Text PDFDicyclohexylcarbodiimide (DCCD) is a carboxyl group modifier and it is an inhibitor of various ATPases. Present experiments, using an in vitro preparation, were designed to study whether DCCD affected the transporters of the bullfrog cornea epithelium, specifically, the Na(+)/K(+) ATPase pump located in the basolateral membrane. For this purpose, corneas were impaled with microelectrodes and experiments were done under short-circuit current (I(sc)) conditions.
View Article and Find Full Text PDF