Cardiac involvement (CI) in phosphomannomutase 2-congenital disorders of glycosylation (PMM2-CDG) is part of the multisystemic presentation contributing to high mortality rates. The most common cardiac manifestations are pericardial effusion, cardiomyopathy, and structural heart defects. A genotype-phenotype correlation with organ involvement has not yet been described.
View Article and Find Full Text PDFBackground: A subarachnoid hemorrhage due to an aneurysmal rupture (aSAH) is a serious condition with severe neurological consequences. The World Federation of Neurosurgical Societies (WFNS) classification is a reliable predictor of death and long-term disability in patients with aSAH. Poor-grade neurological conditions on admission in aSAH (PG-aSAH) are often linked to high mortality rates and unfavorable outcomes.
View Article and Find Full Text PDFPelvic floor muscle (PFM) strength is a critical factor for optimal pelvic floor function. Fluctuations in strength values based on different phases of the menstrual cycle (MC) could signify a need for a paradigm shift in evaluating, approaching, and planning training. This research aims to examine and contrast the pelvic floor muscle strength during different phases of the menstrual cycle.
View Article and Find Full Text PDFPhonon engineering at the nanoscale holds immense promise for a myriad of applications. However, the design of phononic devices continues to rely on regular shapes chosen according to long-established simple rules. Here, we demonstrate an inverse design approach to create a two-dimensional phononic metasurface exhibiting a highly anisotropic phonon dispersion along the main axes of the Brillouin zone.
View Article and Find Full Text PDFRelaxation dynamics of complex many-body quantum systems trapped into metastable states is a very active field of research from both the theoretical and experimental point of view with implications in a wide array of topics from macroscopic quantum tunnelling and nucleosynthesis to non-equilibrium superconductivity and energy-efficient memory devices. In this work, we investigate quantum domain reconfiguration dynamics in the electronic superlattice of a quantum material using time-resolved scanning tunneling microscopy and unveil a crossover from temperature to noisy quantum fluctuation dominated dynamics. The process is modeled using a programmable superconducting quantum annealer in which qubit interconnections correspond directly to the microscopic interactions between electrons in the quantum material.
View Article and Find Full Text PDF