Background: Network theory is largely applied in real-world systems to assess landscape connectivity using empirical or theoretical networks. Empirical networks are usually built from discontinuous individual movement trajectories without knowing the effect of relocation frequency on the assessment of landscape connectivity while theoretical networks generally rely on simple movement rules. We investigated the combined effects of relocation sampling frequency and landscape fragmentation on the assessment of landscape connectivity using simulated trajectories and empirical high-resolution (1 Hz) trajectories of Alpine ibex (Capra ibex).
View Article and Find Full Text PDFMulti-laser Additive Manufacturing systems hold great potential to increase productivity. However, adding multiple energy sources to a powder bed fusion system requires careful selection of a laser scan and inert gas flow strategy to optimize component performance. In this work, we explore four different laser scan and argon flow strategies on the quasi-static compressive mechanical response of Body Centered Cubic lattices.
View Article and Find Full Text PDFAdditively manufactured lattices have been adopted in applications ranging from medical implants to aerospace components. For solid AM components, the effect of build parameters has been well studied but comparably little attention has been paid to the influence of build parameters on lattice performance. For this project, the main aim was to evaluate static compressive mechanical performance of regular and stochastic lattices as a function of build parameters.
View Article and Find Full Text PDFMovement of organisms plays a fundamental role in the evolution and diversity of life. Animals typically move at an irregular pace over time and space, alternating among movement states. Understanding movement decisions and developing mechanistic models of animal distribution dynamics can thus be contingent to adequate discrimination of behavioral phases.
View Article and Find Full Text PDFNitinol is a nickel-titanium alloy widely used in medical devices for its unique pseudoelastic and shape-memory properties. However, nitinol can release potentially hazardous amounts of nickel, depending on surface manufacturing yielding different oxide thicknesses and compositions. Furthermore, nitinol medical devices can be implanted throughout the body and exposed to extremes in pH and reactive oxygen species (ROS), but few tools exist for evaluating nickel release under such physiological conditions.
View Article and Find Full Text PDF