The impacts of large terrestrial volcanic eruptions are apparent from satellite monitoring and direct observations. However, more than three quarters of all volcanic outputs worldwide lie submerged beneath the ocean, and the risks they pose to people, infrastructure, and benthic ecosystems remain poorly understood due to inaccessibility and a lack of detailed observations before and after eruptions. Here, comparing data acquired between 2015 - 2017 and 3 months after the January 2022 eruption of Hunga Volcano, we document the far-reaching and diverse impacts of one of the most explosive volcanic eruptions ever recorded.
View Article and Find Full Text PDFVolcanic eruptions on land create hot and fast pyroclastic density currents, triggering tsunamis or surges that travel over water where they reach the ocean. However, no field study has documented what happens when large volumes of erupted volcanic material are instead delivered directly into the ocean. We show how the rapid emplacement of large volumes of erupted material onto steep submerged slopes triggered extremely fast (122 kilometers per hour) and long-runout (>100 kilometers) seafloor currents.
View Article and Find Full Text PDFAssessment of risks to seabed habitats from industrial activities is based on the resilience and potential for recovery. Increased sedimentation, a key impact of many offshore industries, results in burial and smothering of benthic organisms. Sponges are particularly vulnerable to increases in suspended and deposited sediment, but response and recovery have not been observed in-situ.
View Article and Find Full Text PDFThe sequestration of organic carbon in seafloor sediments plays a key role in regulating global climate; however, human activities can disturb previously-sequestered carbon stocks, potentially reducing the capacity of the ocean to store CO. Recent studies revealed profound seafloor impacts and sedimentary carbon loss due to fishing and shipping, yet most other human activities in the ocean have been overlooked. Here, we present an assessment of organic carbon disturbance related to the globally-extensive subsea telecommunications cable network.
View Article and Find Full Text PDFBackground: As new technologies emerge, there is a significant shift in the way care is delivered on a global scale. Artificial intelligence (AI) technologies have been rapidly and inexorably used to optimize patient outcomes, reduce health system costs, improve workflow efficiency, and enhance population health. Despite the widespread adoption of AI technologies, the literature on patient engagement and their perspectives on how AI will affect clinical care is scarce.
View Article and Find Full Text PDF