Publications by authors named "M A Cassatella"

The 3p21.31 locus is the most robust genomic region associated with COVID-19 severity. This locus contains a main chemokine receptor (CKR) cluster.

View Article and Find Full Text PDF

In metastatic breast cancer (MBC), blood is a source of circulating tumor cells (CTCs). CTCs may serve as a ''real-time liquid biopsy" as they represent metastatic tumor genetics better than primary tumor. is one of the most important oncogenes in treatment-unresponsive breast cancers.

View Article and Find Full Text PDF

Discoveries made in the past decades have brought out that, in addition to their classical primary defensive functions against infections, polymorphonuclear neutrophils play key effector roles not only in chronic inflammatory and immune-mediated diseases but also in cancer. In addition, depending on their differentiation/activation status and/or on the physiological or pathological microenvironment in which they reside, neutrophils have been shown to behave as highly plastic cells, able to acquire new phenotypes/functional states. All these features are well manifested in cancer and modulated during tumor progression.

View Article and Find Full Text PDF

Precise molecular characterization of circulating polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is hampered by their mixed composition of mature and immature cells and lack of specific markers. Here, we focus on mature CD66bCD10CD16CD11b PMN-MDSCs (mPMN-MDSCs) from either cancer patients or healthy donors receiving G-CSF for stem cell mobilization (GDs). By RNA sequencing (RNA-seq) experiments, we report the identification of a distinct gene signature shared by the different mPMN-MDSC populations under investigation, also validated in mPMN-MDSCs from GDs and tumor-associated neutrophils (TANs) by single-cell RNA-seq (scRNA-seq) experiments.

View Article and Find Full Text PDF

The advent of recent cutting-edge technologies has allowed the discovery and characterization of novel progenitors of human neutrophils, including SSCloCD66b+CD15+CD11b-CD49dhiproNeu1s, SSChiCD66b+CD15+CD11b-CD49dintproNeus2s, CD66b+CD15+CD11b+CD49d+CD101-preNeus, and Lin-CD66b+CD117+CD71+eNePs. In this research field, we recently identified CD66b-CD38+CD64dimCD115-, CD34+, and CD34dim/- cells exclusively committed to the neutrophil lineage (which we renamed as CD34+ and CD34dim/- neutrophil-committed progenitors), representing the earliest neutrophil precursors identifiable and sorted by flow cytometry. Moreover, based on their differential CD34 and CD45RA expression, we could identify 4 populations of neutrophil-committed progenitors: CD34+CD45RA-/NCP1s, CD34+CD45RA+/NCP2s, CD34dim/-CD45RA+/NCP3s, and CD34dim/-CD45RA-/NCP4s.

View Article and Find Full Text PDF